Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Rep ; 42(1): 111895, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2227691

ABSTRACT

T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.


Subject(s)
COVID-19 , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD4-Positive T-Lymphocytes , COVID-19/metabolism , T-Lymphocytes, Helper-Inducer , Plasma Cells/metabolism , Receptors, CXCR5 , Receptors, CXCR3/metabolism
2.
Cell Rep ; 38(3): 110242, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588137

ABSTRACT

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Subject(s)
Antibodies, Neutralizing/isolation & purification , Plasma Cells/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Animals , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured , Cohort Studies , Gene Library , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Mammals , Neutralization Tests , Peptide Library , Plasma Cells/chemistry
3.
Sci Rep ; 11(1): 17381, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1379332

ABSTRACT

Cancer patients are more susceptible to SARS-CoV-2 infection and generally have higher mortality rate. Anti-SARS-CoV-2 IgG is an important consideration for the patients in this COVID-19 pandemic. Recent researches suggested the rapid decay of anti-SARS-CoV-2 antibodies in the general population, but the decline rate of the antibodies in cancer patients was unknown. In this observational study, we reported the clinical features of the 53 cancer patients infected by SARS-CoV-2 from Wuhan, China and tracked the presence of anti-SARS-CoV-2 antibodies in the patients for more than 12 months. We found the duration (days) of anti-SARS-CoV-2 IgG in the patients was significant longer in chemotherapy (mean: 175; range: 75 to 315) and radiotherapy groups (mean: 168; range: 85 to 265) than in non-chemo- or radio-therapy group (mean: 58; range: 21 to 123) after their recovery from COVID-19. We also used single-cell RNA sequencing to track the immunologic changes in a representative patient recovered  from COVID-19 and found that CD8 + effective T cells, memory B cells and plasma cells were persistently activated in the patient undergoing chemotherapy. Together, our findings show that chemotherapy and radiotherapy might be beneficial to extend the duration of anti-SARS-CoV-2 IgG.


Subject(s)
COVID-19/blood , Immunoglobulin G/analysis , Neoplasms/immunology , Neoplasms/virology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/analysis , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , China , Drug Therapy , Female , Humans , Male , Middle Aged , Neoplasms/drug therapy , Neoplasms/radiotherapy , Plasma Cells/metabolism , Radiotherapy , SARS-CoV-2/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288907

ABSTRACT

Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.


Subject(s)
Eosinophils/physiology , Antibodies, Monoclonal/therapeutic use , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Eosinophilic Esophagitis/drug therapy , Eosinophilic Esophagitis/immunology , Eosinophilic Esophagitis/pathology , Eosinophils/cytology , Eosinophils/immunology , Exosomes/metabolism , Extracellular Traps/metabolism , Humans , Plasma Cells/cytology , Plasma Cells/metabolism , SARS-CoV-2/isolation & purification
5.
Annu Rev Immunol ; 39: 345-368, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1069448

ABSTRACT

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Energy Metabolism , Gene Expression Regulation , Immunologic Memory , Plasma Cells/immunology , Plasma Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL